82 research outputs found

    Fundamentals of electromagnetic nanonetworks in the terahertz band

    Get PDF
    Nanotechnology is providing a new set of tools to the engineering community to design nanoscale components with unprecedented functionalities. The integration of several nano-components into a single entity will enable the development of advanced nanomachines. Nanonetworks, i.e., networks of nanomachines, will enable a plethora of applications in the biomedical, environmental, industrial and military fields. To date, it is still not clear how nanomachines will communicate. The miniaturization of a classical antenna to meet the size requirements of nanomachines would impose the use of very high radiation frequencies. The available transmission bandwidth increases with the antenna resonant frequency, but so does the propagation loss. Due to the expectedly very limited power of nanomachines, the feasibility of nanonetworks would be compromised if this approach were followed. Therefore, a new wireless technology is needed to enable this paradigm. The objective of this thesis is to establish the foundations of graphene-enabled electromagnetic communication in nanonetworks. First, novel graphene-based plasmonic nano-antennas are proposed, modeled and analyzed. The obtained results point to the Terahertz Band (0.1-10 THz) as the frequency range of operation of novel nano-antennas. For this, the second contribution in this thesis is the development of a novel channel model for Terahertz Band communication. In addition, the channel capacity of the Terahertz Band is numerically investigated to highlight the potential of this still-unregulated frequency band. Third, a novel modulation based on the transmission of femtosecond-long pulses is proposed and its performance is analyzed.% in terms of achievable information rates. Fourth, the use of low-weight codes to prevent channel errors in nanonetworks is proposed and investigated. Fifth, a novel symbol detection scheme at the receiver is developed to support the proposed modulation scheme. Sixth, a new energy model for self-powered nanomachines with piezoelectric nano-generators is developed. Moreover, a new Medium Access Control protocol tailored to the Terahertz Band is developed. Finally, a one-to-one nano-link is emulated to validate the proposed solutions.Ph.D

    Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band

    Get PDF
    Abstract—Wireless nanosensor networks (WNSNs) consist of nanosized communicating devices, which can detect and measure new types of events at the nanoscale. WNSNs are the enabling technology for unique applications such as intrabody drug delivery systems or surveillance networks for chemical attack prevention. One of the major bottlenecks in WNSNs is posed by the very limited energy that can be stored in a nanosensor mote in contrast to the energy that is required by the device to communicate. Recently, novel energy harvesting mechanisms have been proposed to replenish the energy stored in nanodevices. With these mechanisms, WNSNs can overcome their energy bottleneck and even have infinite lifetime (perpetual WNSNs), provided that the energy harvesting and consumption processes are jointly designed. In this paper, an energy model for self-powered nanosensor motes is developed, which successfully captures the correlation between the energy harvestin

    Capacity and Outage of Terahertz Communications with User Micro-mobility and Beam Misalignment

    Get PDF
    User equipment mobility is one of the primary challenges for the design of reliable and efficient wireless links over millimeter-wave and terahertz bands. These high-rate communication systems use directional antennas and therefore have to constantly maintain alignment between transmitter and receiver beams. For terahertz links, envisioned to employ radiation patterns of no more than few degrees wide, not only the macro-scale user mobility (human walking, car driving, etc.) but also the micro-scale mobility - spontaneous shakes and rotations of the device - becomes a severe issue. In this paper, we propose a mathematical framework for the first-order analysis of the effects caused by micro-mobility on the capacity and outage in terahertz communications. The performance of terahertz communications is compared with and without micro-mobility illustrating the difference of up to 1 Tbit/s or 75%. In response to this gap, it is finally shown how the negative effects of the micro-mobility can be partially addressed by a proper adjustment of the terahertz antenna arrays and the period of beam realignment procedure.Comment: Accepted to IEEE Transactions on Vehicular Technology on April 9, 2020. Copyright may be transferred without further notice after which this version may become non-availabl

    Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale

    Get PDF
    Graphene is a promising material which has been proposed to build graphene plasmonic miniaturized antennas, or graphennas, which show excellent conditions for the propagation of Surface Plasmon Polariton (SPP) waves in the terahertz band. Due to their small size of just a few micrometers, graphennas allow the implementation of wireless communications among nanosystems, leading to a novel paradigm known as Graphene-enabled Wireless Communications (GWC). In this paper, an analytical framework is developed to evaluate how the channel capacity of a GWC system scales as its dimensions shrink. In particular, we study how the unique propagation of SPP waves in graphennas will impact the channel capacity. Next, we further compare these results with respect to the case when metallic antennas are used, in which these plasmonic effects do not appear. In addition, asymptotic expressions for the channel capacity are derived in the limit when the system dimensions tend to zero. In this scenario, necessary conditions to ensure the feasibility of GWC networks are found. Finally, using these conditions, new guidelines are derived to explore the scalability of various parameters, such as transmission range and transmitted power. These results may be helpful for designers of future GWC systems and networks.Peer ReviewedPostprint (author’s final draft

    Terahertz Communications for 6G and Beyond Wireless Networks: Challenges, Key Advancements, and Opportunities

    Full text link
    The unprecedented increase in wireless data traffic, predicted to occur within the next decade, is motivating academia and industries to look beyond contemporary wireless standards and conceptualize the sixth-generation (6G) wireless networks. Among various promising solutions, terahertz (THz) communications (THzCom) is recognized as a highly promising technology for the 6G and beyond era, due to its unique potential to support terabit-per-second transmission in emerging applications. This article delves into key areas for developing end-to-end THzCom systems, focusing on physical, link, and network layers. Specifically, we discuss the areas of THz spectrum management, THz antennas and beamforming, and the integration of other 6G-enabling technologies for THzCom. For each area, we identify the challenges imposed by the unique properties of the THz band. We then present main advancements and outline perspective research directions in each area to stimulate future research efforts for realizing THzCom in 6G and beyond wireless networks.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore